- Standard Mathematical Statement
  - *Minimize*  $f(x) = f(x_1, x_2, ..., x_n)$
  - subject to

$$g_{j}(x) \le 0$$
  $j = 1, ...., n_{g}$ 
 $h_{k}(x) = 0$   $k = 1, ..., n_{e}$ 
 $x_{i}^{L} \le x_{i} \le x_{i}^{U}$   $i = 1, ..., n$ 

- Graphical illustration of an optimization problem (possible for two or at most three design variable problems).
  - Plot the constraint equations
  - Identify the feasible design space
  - Plot objective function contours
  - Locate optimum by inspection

- When an explicit equality constraint is present, the problem size may be reduced by expressing one of the design variables in terms of the other ones.
- Minimize  $f(x_1, x_2, x_3) = 5x_1 - 3x_2 + 7x_3$
- subject to  $g_1(\mathbf{x}) \le (x_1 - 2x_2 + x_3 \le 0)$ 

  - $g_2(\mathbf{x}) \le (-x_1 + x_2 x_3 \le 0)$  $h_1(\mathbf{x}) = -x_1 + 2x_2 + x_3 = 0$
- Minimize  $f(x_1, x_2) = 12x_1 - 17x_2$
- subject to
- $g_1(\mathbf{x}) \le (2x_1 4x_2 \le 0)$  $g_2(\mathbf{x}) \le (-2x_1 + 3x_2 \le 0)$



$$g_1(\mathbf{x}) = x_1 - 2x_2 \le 0$$

$$g_2(\mathbf{x}) = -x_1 + x_2 \le 0$$

 $S = \{x \mid x_1 - 2x_2 \le 0; -x_1 + x_2 \le 0\}$ 

- Design optimization problems that you should watch for.!
  - Unbounded problems
  - Problems with multiple solutions
  - Problems with no solution
  - Optimal designs with no active constraints

August 26, 1999